martes, 23 de noviembre de 2010

El Movimiento Rectilíneo Uniforme



-          En Internet, individualmente indagaran; el tema: El movimiento Rectilíneo Uniforme.
-          Describir y anotar bibliografía

Movimiento: Un cuerpo tiene movimiento si cambia de posición a través del tiempo.

Rectilíneo: Un movimiento tiene una trayectoria rectilínea si se mueve a lo largo de una línea recta.

Uniforme: Se refiere a que el cuerpo que se mueve avanza, o retrocede, la misma distancia en cada unidad de tiempo. También se puede decir que se refiere a que el cuerpo que se mueve lo hace con velocidad constante.

           El MRU se caracteriza por:
a)Movimiento que se realiza en una sóla direccion en el eje horizontal.
b)Velocidad constante; implica magnitud y dirección inalterables.
c)Las magnitud de la velocidad recibe el nombre de rapidez. Este movimiento no presenta aceleración (aceleración=0).
El concepto de velocidad es el cambio de posición (desplazamiento) con respecto al tiempo.
Fórmula:
v= d/t  ;  d=v*t   ;  t=d/v

v=velocidad         d=distancia o desplazamiento    t=tiempo




Al graficar el desplazamiento (distancia) contra tiempo se obtiene una línea recta. La pendiente de la línea recta representa el valor de la velocidad para dicha partícula.
Al realizar la gráfica de velocidad contra tiempo obtenemos una recta paralela al eje X. Podemos calcular el deslazamiento como el área bajo la línea recta.











-          ¿Podrá ponerse en movimiento un cuerpo, sólo a expensas de sus fuerzas internas?
-          Discusión en equipo de la respuesta a la pregunta anterior:

No, debido a que siempre dependerá de una fuerza externa para moverse

Cada equipo presenta al grupo sus respuestas y se llega a un consenso de la respuesta:



De la actividad experimental se obtuvieron los datos de distancia recorrida por el móvil y el tiempo, calcular la velocidad, graficar  en Excel  distancia-velocidad y pegar la gráfica en este documento.

                    Tabulación                                                                                          GRAFICA
Distancia cm
Tiempo segundos
Velocidad cm/seg
20
0.5
40
40
1.1
36.36
60
1.7
35.29
80
2.1
38.09
100
2.8
35.71
120
3.5
34.28






En equipo analizar los resultados obtenidos y escribir su conclusión:
La velocidad fue casi constante en todos de 0 a 40 cm/seg maximo


Localizar en Internet el: Simulador del Movimiento  Rectilíneo Uniforme, de acuerdo a la escala del simulador, obtener seis datos de distancia y el tiempo de recorrido para calcular la velocidad del móvil. Graficar en Excel distancia-velocidad y pegar la gráfica en este documento.
                    Tabulación                                                                                          GRAFICA
Lectura
Distancia cm
Tiempo segundos
Velocidad cm/seg
1
5
0.5
10
2
10
1
10
3
15
1.5
10
4
20
2
10
5
25
2.5
10
6
30
3
10



















En equipo analizar  los resultados obtenidos y escribir su conclusión:
La velocidad en todas fue constante debido a que de eso se trata el MUR

Comparar las conclusiones obtenidas del experimento con las del Simulador y escribir las conclusiones finales con referencia a la Pregunta inicial:
Los resultados son los mismos en ambos casos y se comprueba la hipótesis del MRU.

recapitulacion

escribimos en el pizarron lo que entendimos de la termodinamica y desoues el viernes el profe experimento con nitrogeno liquido y metio una hoja de un arbol al recipiente con nitrogeno y despues se rompio como si fuera cristal. tambien en el recipiente con connitrogeno puso agua y esta se congelo y se hizo hielo, puso varias cosas en el notrogeno como un gajo de mandarina, un billete y otras cosas.

l



Conversión de trabajo en calor.

MATERIAL:
Cautín, madera, metal, piedra, taladro con broca, termómetro.
PROCEDIMIENTO:
A.- Colocar la broca al taladro y aplicar durante dos minutos la acción de taladrar a la madera, el metal y la piedra.
C.-Dibujar sobre la madera un motivo para grabarlo con el cautín.
Equipo
Temperatura madera
Metal
Piedra
1
100C
190C
170C
2
160C
190C
180C
3
170 C
19 0C
160 C
4
150C
190C
170C
5
180C
190C
170C
6
18OC
190C
18.50C

Graficar los datos para cada material (equipo-temperatura).




B.-Medir la temperatura después de los dos minutos en cada caso.

Fenómenos térmicos y contaminación.


Los fenómenos térmicos son aquellos que están relacionados con la emisión y la absorción del calor. Estos fenómenos pueden ser encontrados en cada actividad que el hombre realiza diariamente: el calentamiento de la atmósfera por la radiación solar, la climatización de los locales por medio del aire acondicionado, la cocción de los alimentos y su refrigeración.

Una característica general de los fenómenos térmicos es que existen cuerpos que ceden energía en forma de calor, y otros que son capaces de absorber dicha energía. Con el objetivo de caracterizar cuantitativamente la emisión o la absorción del calor, se ha establecido el concepto cantidad de calor.

La cantidad de calor (Q) se define como la energía cedida o absorbida por un cuerpo de masa (m), cuando su temperatura varía en un número determinado de grados. La cantidad de calor (Q) está relacionada directamente con la naturaleza de la sustancia que compone el cuerpo. La dependencia de la cantidad de calor con la naturaleza de la sustancia se caracteriza por una magnitud denominada calor específico de la sustancia.

El calor específico de la sustancia se representa con la letra C y se define como la cantidad de calor requerida por la unidad de masa de una sustancia para variar su temperatura en 1 °C. El calor específico (C) se expresa en unidades de energía [joule (J), kilocaloría (kcal), caloría (cal), etc.)] por unidades de masa [(gramo (g), kilogramo (kg), libra (lb), etc.] y temperatura [grado centígrado (°C)].
 
La contaminación es cualquier sustancia o forma de energía que puede provocar algún daño o desequilibrio (irreversible o no) en un ecosistema, en el medio físico o en un ser vivo. Es siempre una alteración negativa del estado natural del medio ambiente, y por tanto, se genera como consecuencia de la actividad humana.
Para que exista contaminación, la sustancia contaminante deberá estar en cantidad relativa suficiente como para provocar ese desequilibrio. Esta cantidad relativa puede expresarse como la masa de la sustancia introducida en relación con la masa o el volumen del medio receptor de la misma. Este cociente recibe el nombre de concentración.
Los agentes contaminantes tienen relación con el crecimiento de la población y el consumo (combustibles fósiles, la generación de basura, desechos industriales, etc.), ya que, al aumentar estos, la contaminación que ocasionan es mayor.
Por su consistencia, los contaminantes se clasifican en sólidos, líquidos y gaseosos. Se descartan los generados por procesos naturales, ya que, por definición, no contaminan.
Los agentes sólidos están constituidos por la basura en sus diversas presentaciones. Provocan contaminación del suelo, del aire y del agua. Del suelo porque produce microorganismos y animales dañinos; del aire porque produce mal olor y gases tóxicos, y del agua porque la ensucia y no puede utilizarse.
Los agentes líquidos incluyen las aguas negras, los desechos industriales, los derrames de combustibles derivados del petróleo, los cuales dañan básicamente el agua de ríos, lagos, mares y océanos, y con ello provocan la muerte de diversas especies.
Los agentes gaseosos incluyen la combustión del petróleo (óxido de nitrógeno y azufre) y la quema de combustibles como la gasolina (que libera monóxido de carbono), la basura y los desechos de plantas y animales.
Todos los agentes contaminantes provienen de una fuente determinada y pueden provocar enfermedades respiratorias y digestivas. Es necesario que la sociedad humana tome conciencia del problema.

Entropía. Concepto relacionado con la irreversibilidad

Entropia
(Carlos Córdova y Ricardo Hinrichsen)
A traves de esta pagina veremos el concepto de ENTROPIA y su utilidad en el analisis de procesos que interesan al ingeniero.
  1. Concepto de Entropia
  2. Caracteristicas
  3. Transferencia de Entropia
  4. Irreversibilidad y Entropia
  5. Principio de aumento de entropia
  6. Calculo de variaciones de Entropia
  • Concepto de Entropia .

    1.- Desigualdad de Clausius:
    • La desigualdad de Clausiu es una relacion entre las temperasturas de un numero arbitrario de fuentes termicas y las cantidades de calor entregadas o absorbidas por ellas, cuando a una sustancia se le hace recorrer un proceso ciclico arbitrario durante el cual intercambie calor con las fuentes. Esta desigualdad viene dada por:
      dQ / T <= 0
      en el caso de una cantida dinfinita de fuentes. 2.- Entropia: En la desigualdad de Clausius no se han impuesto restricciones con respecto a la reversibilidad o no del proceso, pero si hacemos la restriccion de que el proceso sea reversible podemos ver que no importa el camino que usemos para recorrer el proceso, el cambio de calor dQ va a hacer iqual en un sentido o en otro por lo que llegaremos a que:
      dQ / T = 0
      Como estamos imponiendo que usemos un camino cualquiera esta diferencial es una diferencial exacta y diremos que representa a una funciopn de estado S que pude representarse por dS. Esta cantidad S recibe el nombre de Entropia del sistema y la ecuacion :
      dQ / T = dS
      establece que la variacion de entropia de un sistema entre dos estados de equilibrio cualesquiera se obtiene llevando el sistema a lo largo de cualquier camino reversible que una dichos estados, dividiendo el calor que se entrega al sistema en cada punto del camino por la temperatura del sistema y sumando los coeficientes asi obtenidos. En la practica, generalmente los procesos no son del todo reversibles por lo que la entropia aumenta , no es conservativay ello es en gran parte el misterio de este concepto.
    • Irreversibilidad y entropia.
      • Ahora nos podriamos preguntar : De que depende la reversibilidad de un proceso??. Una respuesta a esto es decir que la variacion de entropia es el criterio que permite establecer el sentido en que se produciran un proceso determinado que cumpla con el primer principio de la termodinamica. Asi, el ingeniero mecanico esta interesado en la reversibilidad y en las variaciones de entropia por que desde su punto de vista algo se ha "perdido" cuandoo se ha producido un prceso irreversible, en una maquina de vapor io en una turbina. Lo que se ha perdido, sin embargo, no es enrgia, sino una oprtunidad. La oprtunidad de transformar energia termica en energia mecanica. Puesto que la energia interna de una sustancia que evoluciona en una maquina termica se recupera generalmente por absorcion del calor, decimos que lo que se pierde es una oprtunidad de converretir calor en trabajo mecanico. Es imposible extraer calor de una unica fuente y hacer funcionar una maquina ciclica; en cambio podriamos hacer hacer funcionar una maquina etre dos fuentes, una caliente y otra fria, extrayendo calor de una y entregandosela a la otra, y disponiendo de una parte de ese calor para producir trabajo mecanico. Una vez que las fuentes han alcanzado la misma temperatura, esta oprtunidad esta irremediablemente perdida. Por lo tanto cualquier proceso irreversible en una maquina termica disminuye su rendimiento, es decir, reduce la cantidad de trabajo mecanico que puede obtenerse con una cierta cantidad de calor absorbido por la sustancia que evoluciona.

Segunda ley de la termodinamica

La definición formal del segundo principio de la Termodinámica establece que:
En un estado de equilibrio, los valores que toman los parámetros característicos de un sistema termodinámico cerrado son tales que maximizan el valor de una cierta magnitud función dichos parámetros, llamada entropía.
La entropía de un sistema es una magnitud física abstracta que la mecánica estadística identifica con el grado de desorden molecular interno de un sistema físico. La termodinámica clásica, en cambio, la define como la relación entre el calor transmitido y la temperatura a la que se transmite. La termodinámica axiomática, en cambio, define a la entropía como una cierta función –a priori, de forma desconocida–, que depende de los llamados "parámetros característicos" del sistema, y que sólo puede definirse para los estados de equilibrio del sistema.
Dichos parámetros característicos se establecen a partir de un postulado derivado del primer principio de la termodinámica, llamado a veces el principio de estado. Según éste, el estado de equilibrio de un sistema queda totalmente definido por medio de la energía interna del sistema, su volumen y su composición molar. Cualquier otro parámetro termodinámico, como podrían serlo la temperatura o la presión, se define como una función de dichos parámetros. Así, la entropía será también una función de dichos parámetros.
El segundo principio de la termodinámica establece que dicha entropía sólo puede definirse para estados de equilibrio termodinámico, y que de entre todos los estados de equilibrio posibles –que vendrán definido por los parámetros característicos–, sólo se puede dar el que, de entre todos ellos, maximiza la entropía.
Las consecuencias de este enunciado son sutiles: al considerar un sistema cerrado tendente al equilibrio, los estados de equilibrio posibles incluyen todos aquellos que sean compatibles con los límites o contornos del sistema. Entre ellos se encuentra, evidentemente, el estado de equilibrio de partida. Si el sistema varía su estado de equilibrio desde el de partida a otro, ello es debido a que la entropía del nuevo estado es mayor que la del estado inicial; si el sistema cambia de estado de equilibrio, su entropía sólo puede aumentar. Por tanto, la entropía de un sistema aislado termodinámicamente sólo puede incrementarse. Como el sistema aislado por antonomasia es el propio universo, el segundo principio de la termodinámica suele resumirse en que:
La cantidad de entropía del Universo tiende a incrementarse con el tiempo.
SIn embargo, la termodinámica axiomática no reconoce al tiempo como una variable termodinámica. Formalmente, la entropía sólo puede definirse para estados en equilibrio. En el proceso que va de un estado de equilibrio a otro no hay estados de equilibrio, por lo que la entropía en dichos estados de no-equilibrio no puede definirse sin incurrir en inconsistencias formales dentro de la propia termodinámica. Así, la entropía no puede ser una función del tiempo, por lo que hablar de variaciones de la misma en el tiempo es formalmente incorrecto.
Cuando se hace, es debido a que se ha presupuesto que en el proceso de un estado de equilibrio a otro se ha pasado por infinitos estados intermedios de equilibrio, procedimiento que permite introducir al tiempo como parámetro. En tanto en cuanto el estado de equilibrio final sea aquél de máxima entropía posible, no se habrá incurrido en una incosistencia frontal por cuanto dichos estados de equilibrio intermedios no han afectado al único real (el final).

Esquema general de las máquinas reales y termicaS

 


Las máquinas térmicas son aquellos dispositivos que se utilizan para transformar la energía (de un tipo a otro), y que en su funcionamiento producen un intercambio de calor. Dentro de las clases de máquinas térmicas, hay dos grandes grupos: los motores y los generadores. En los motores térmicos, la energía del fluido que atraviesa la máquina disminuye, obteniéndose energía mecánica. En el caso de generadores térmicos, el proceso es el inverso, de modo que el fluido incrementa su energía al atravesar la máquina. Tal distinción es puramente formal: Los motores térmicos, son máquinas que emplean la energía resultante de un proceso, generalmente de combustión, para incrementar la energía de un fluido que posteriormente se aprovecha para la obtención de energía mecánica. Los ciclos termodinámicos empleados, exigen la utilización de una máquina o grupo generador que puede ser hidráulico (en los ciclos de turbina de vapor) o térmico (en los ciclos de turbina de gas), de modo que sin éste el grupo motor no puede funcionar, de ahí que en la práctica se denomine Motor Térmico al conjunto de elementos atravesados por el fluido, y no exclusivamente al elemento en el que se obtiene la energía mecánica. 




Máquinas térmicas y eficiencia de máquinas ideales y reales


La eficiencia en una maquina térmica es la relación entre el trabajo mecánico producido y el calor suministrado, la formulas es la siguiente: 

e = T / Q1 = (Q1-Q2)/Q1 = (T1-T2)/T1 donde: 
T = trabajo mecánico (cal, Joule) 
Q1 = calor suministrado (cal, Joule) 
Q2 = calor obtenido (cal, Joule) 
T1 = trabajo de entrada (cal, Joule) 
T2 = trabajo de salida (cal, Joule) 
e = eficiencia (%)
La eficiencia de una máquina térmica depende entre qué temperaturas trabaje... porque esto es fundamental
pero lo que importa es que esto junto con las características de fabricación de dicha máquina hace que se produzcan determinadas pérdidas de calor que producen una disminución de la eficiencia y por lo tanto la máquina no entrega el 100 % de su rendimiento como sería en un caso ideal, sino que tiene un rendimiento menor... 

Recuerda que una máquina térmica consiste en un instrumento que genera trabajo mecánico a partir de energía térmica, pero no toda la energía térmica la transforma en energía mecánica sino que parte de esta energía se disipa al medio ambiente o medio frío.... 

Ahora, profundizando un poco más, sabemos que ninguna máquina puede tener un rendimiento mayor al de la llamada máquina térmica de Carnot... que se determina en base a las temperaturas entre las cuales operaría dicha máquina, pero sería en condiciones también ideales... para la fabricación de la máquina.
Por supuesto, existen consideraciones de diseño que impiden que las máquinas reales
alcancen el rendimiento de la máquina de Carnot. Así, las indeseables pérdidas de energía, por
fricción, conducción, radiación, reducen drásticamente el rendimiento de las máquinas reales. Pero
estas pérdidas de rendimiento se pueden suprimir en parte mediante nuevos diseños, materiales más
avanzados o mejores lubricantes, haciendo que se acerque el rendimiento de la máquina real al de la
máquina de Carnot. Sin embargo, el máximo rendimiento que cualquier máquina funcionando entre
dos focos puede tener, siempre será el de la máquina de Carnot funcionando entre ambos focos.

Primera ley de la termodinámica


El primer principio de la termodinámica o primera ley de la termodinámica,[1] se postula a partir del siguiente hecho experimental:
En un sistema cerrado adiabático (aislado) que evoluciona de un estado inicial \mathcal{A} a otro estado final \mathcal{B}, el trabajo realizado no depende ni del tipo de trabajo ni del proceso seguido.
Más formalmente, este principio se descompone en dos partes;
Este enunciado supone formalmente definido el concepto de trabajo termodinámico, y sabido que los sistemas termodinámicos sólo pueden interaccionar de tres formas diferentes (interacción másica, interacción mecánica e interacción térmica). En general, el trabajo es una magnitud física que no es una variable de estado del sistema, dado que depende del proceso seguido por dicho sistema. Este hecho experimental, por el contrario, muestra que para los sistemas cerrados adiabáticos, el trabajo no va a depender del proceso, sino tan solo de los estados inicial y final. En consecuencia, podrá ser identificado con la variación de una nueva variable de estado de dichos sistemas, definida como energía interna.
Se define entonces la energía interna, U,como una variable de estado cuya variación en un proceso adiabático es el trabajo intercambiado por el sistema con su entorno:
 \Delta U = + \ W
Cuando el sistema cerrado evoluciona del estado inicial A al estado final B pero por un proceso no adiabático, la variación de la Energía debe ser la misma, sin embargo, ahora, el trabajo intercambiado será diferente del trabajo adiabático anterior. La diferencia entre ambos trabajos debe haberse realizado por medio de interacción térmica. Se define entonces la cantidad de energía térmica intercambiada Q (calor) como:
Q = \Delta U - W\,
Esta definición suele identificarse con la ley de la conservación de la energía y, a su vez, identifica el calor como una transferencia de energía. Es por ello que la ley de la conservación de la energía se utilice, fundamentalmente por simplicidad, como uno de los enunciados de la primera ley de la termodinámica:
La variación de energía de un sistema termodinámico cerrado es igual a la diferencia entre la cantidad de calor y la cantidad de trabajo intercambiados por el sistema con sus alrededores.
En su forma matemática más sencilla se puede escribir para cualquier sistema cerrado:
 \Delta U = Q + W\,
donde:
\Delta U\, es la variación de energía del sistema,
 Q\, es el calor intercambiado por el sistema a través de unas paredes bien definidas, y
 W\, es el trabajo intercambiado por el sistema a sus alrededores.

   Historia

Durante la década de 1840, varios físicos entre los que se encontraban Joule, Helmholtz y Meyer, fueron desarrollando esta ley. Sin embargo, fueron primero Clausius en 1850 y Thomson (Lord Kelvin) un año después quienes escribieron los primeros enunciados formales.[2] [3]

   Descripción

La forma de transferencia de energía común para todas las ramas de la física -y ampliamente estudiada por éstas- es el trabajo.
Dependiendo de la delimitación de los sistemas a estudiar y del enfoque considerado, el trabajo puede ser caracterizado como mecánico, eléctrico, etc. pero su característica principal es el hecho de transmitir energía y que, en general, la cantidad de energía transferida no depende solamente de los estados iniciales y finales, sino también de la forma concreta en la que se lleven a cabo los procesos.
El calor es la forma de transferencia de un tipo de energía particular, propiamente termodinámica, que es debida únicamente a que los sistemas se encuentren a distintas temperaturas (es algo común en la termodinámica catalogar el trabajo como toda trasferencia de energía que no sea en forma de calor). Los hechos experimentales corroboran que este tipo de transferencia también depende del proceso y no sólo de los estados inicial y final.
Sin embargo, lo que los experimentos sí demuestran es que dado cualquier proceso de cualquier tipo que lleve a un sistema termodinámico de un estado A a otro B, la suma de la energía transferida en forma de trabajo y la energía transferida en forma de calor siempre es la misma y se invierte en aumentar la energía interna del sistema. Es decir, que la variación de energía interna del sistema es independiente del proceso que haya sufrido. En forma de ecuación y teniendo en cuenta el criterio de signos termodinámico esta ley queda de la forma:
 \Delta U= \ Q + \ W\,
Así, la Primera Ley (o Primer Principio) de la termodinámica relaciona magnitudes de proceso (dependientes de éste) como son el trabajo y el calor, con una variable de estado (independiente del proceso) tal como lo es la energía intern

EXPERIMENTO Aplicaciones de las formas de calor: conducción, convección, radiación.


Material: Sistema de calentamiento, placas de metal, parafina, matraz erlenmeyerm aserrín, lámpara, radiómetro.
Procedimiento:
-          Colocar  en la placa de metal una  muestra de para fina, colocar la placa de metal sobre la tela de alambre con asbesto y calentar lentamente medir el tiempo de cambio de estado de la parafina.
-         - colocar 100 ml de agua en el matraz erlenmeyer, adicionar una muestra de aserrín, colocar el matraz erlenmeyer sobre la malla de alambre y calentar tomar la temperatura cada minuto hasta evaporación(graficar tiempo-temperatura), observar lo que ocurre con el aserrín.
-         - colocar el radiómetro sobre la mesa y enfocar la luz de la lámpara a la parte oscura del radiómetro, medir el numero de vueltas por minuto.
Observaciones
Actividad
Observaciones
1
 La parafina paso de estado solido a liquido al ser calentada sobre el metal
2
 el aserrin subio a la superficie del agua ya que antes se encontraba en el fondo del matraz
3
 Al enfocar la luz al radiometro este comenzo a girar