miércoles, 2 de febrero de 2011

INTENSIDAD DEL CAMPO ELECTRICO


Se llama intensidad de campo eléctrico  en un punto al valor de la fuerza resultante de origen eléctrico que actúa sobre una carga puntual dividido el valor de la carga (carga exploradora, elemental o testigo) colocada en dicho punto.
Líneas del campo eléctrico
El campo eléctrico se representa gráficamente mediante las llamadas líneas de campo o líneas de fuerza.
  Indican la dirección del campo E. Se dibujan de manera que son tangentes a la dirección del campo en cada punto.
  Su densidad indica la intensidad del campo.
  Son abiertas.
  El número de líneas que salgan de una carga positiva o entren en una carga negativa debe ser proporcional a dicha carga.
  Las líneas de campo no pueden cortarse.
  Si el campo es uniforme, las líneas de campo son rectas paralelas.

CAMPO ELECTRICO

El campo eléctrico es un campo físico que es representado mediante un modelo que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica.1 Matemáticamente se describe como un campo vectorial en el cual una carga eléctrica puntual de valor q sufre los efectos de una fuerza eléctrica \vec F dada por la siguiente ecuación:
(1)\vec F = q \vec E
En los modelos relativistas actuales, el campo eléctrico se incorpora, junto con elcampo magnético, en campo tensorial cuadridimensional, denominado campo electromagnético Fμν.2
Los campos eléctricos pueden tener su origen tanto en cargas eléctricas como en campos magnéticos variables. Las primeras descripciones de los fenómenos eléctricos, como la ley de Coulomb, sólo tenían en cuenta las cargas eléctricas, pero las investigaciones de Michael Faraday y los estudios posteriores de James Clerk Maxwell permitieron establecer las leyes completas en las que también se tiene en cuenta la variación del campo magnético.
Esta definición general indica que el campo no es directamente medible, sino que lo que es observable es su efecto sobre alguna carga colocada en su seno. La idea de campo eléctrico fue propuesta por Faraday al demostrar el principio de inducción electromagnética en el año 1832.
La unidad del campo eléctrico en el SI es Newton partido de culombio (N/C), voltio partido de metro (V/m) o, en unidades básicas, kg·m·s−3·A−1

Campo eléctrico producido por un conjunto de cargas puntuales. Se muestra en rosa la suma vectorial de los campos de las cargas individuales; \vec E =\vec E_1 +\vec E_2 + \vec E_3 .

ELECTROESTATICA. LEY DE COULOMB



Se realizará un análisis puntual del problema (cargas puntuales), dado que de otra manera incidiría en la acción de las cargas no solo su valor, sino también su forma y dimensiones, de allí que el estudio se reduce al de cargas del tamaño de un punto físicamente hablando. 


Se entiende por cargas puntuales la de los cuerpos cargados, cuyas dimensiones son pequeñas en comparación con las distancias que los separa.
La ley de Coulomb fue estudiada en 1785 por medio de un instrumento llamado balanza de torsión, en el cual se pudo realizar mediciones que permitían establecer el valor de la fuerza de interacción entre cargas eléctricas.
En dicha experiencia se pudo además constatar que cargas del mismo signo se repelen y cargas de signos contrarios se atraen.
La fuerza F de acción recíproca entre cargas puntuales es directamente proporcional al producto de las cargas eléctricas (q y q') e inversamente proporcional al cuadrado de la distancia que las separa (d).


FORMAS DE ELECTRIZACION Y DETECCIÓN


Cuando a un cuerpo se le dota de propiedades eléctricas, es decir, adquiere cargas eléctricas, se dice que ha sido electrizado. 

La electrización es uno de los fenómenos que estudia la electrostática.

A.- Electrización por contacto
Se puede cargar un cuerpo con sólo tocarlo con otro previamente cargado. En este caso, ambos quedan con el mismo tipo de carga, es decir, si toco un cuerpo neutro con otro con carga positiva, el primero también queda con carga positiva.

B.- Electrización por frotamiento
Al frotar dos cuerpos eléctricamente neutros (número de electrones = número de protones), ambos se cargan, uno con carga positiva y el otro con carga negativa.
Si frotas una barra de vidrio con un paño de seda, hay un traspaso de electrones del vidrio a la seda.
Si frotas un lápiz de pasta con un paño de lana, hay un traspaso de electrones del paño a al lápiz.

C.- Electrización por inducción
Un cuerpo cargado eléctricamente puede atraer a otro cuerpo que está neutro. Cuando acercamos un cuerpo electrizado a un cuerpo neutro, se establece una interacción eléctrica entre las cargas del primero y el cuerpo neutro.
Como resultado de esta relación, la redistribución inicial se ve alterada: las cargas con signo opuesto a la carga del cuerpo electrizado se acercan a éste.
En este proceso de redistribución de cargas, la carga neta inicial no ha variado en el cuerpo neutro, pero en algunas zonas está cargado positivamente y en otras negativamente
Decimos entonces que aparecen cargas eléctricas inducidas. Entonces el cuerpo electrizado induce una carga con signo contrario en el cuerpo neutro y por lo tanto lo atrae.

En términos de movimiento de electrones, cuando...
A.- Un objeto con carga positiva se conecta a tierra:
Existe un flujo de electrones de tierra hasta la carga, carga neutra.
B.- Una esfera con carga negativa se pone en contacto con una neutra:
Existe un flujo de electrones de la carga hacia tierra.
C.- Una barra con carga positiva se acerca a una placa metálica neutra y aislada:
Se atraen los cuerpos.

conservación de la carga


 

En concordancia con los resultados experimentales, el principio de conservación de la carga establece que no hay destrucción ni creación neta de carga eléctrica, y afirma que en todo proceso electromagnético la carga total de un sistema aislado se conserva.
En un proceso de electrización, el número total de protones y electrones no se altera, sólo existe una separación de las cargas eléctricas. Por tanto, no hay destrucción ni creación de carga eléctrica, es decir, la carga total se conserva. Pueden aparecer cargas eléctricas donde antes no había, pero siempre lo harán de modo que la carga total del sistema permanezca constante. Además esta conservación es local, ocurre en cualquier región del espacio por pequeña que sea.4
Al igual que las otras leyes de conservación, la conservación de la carga eléctrica está asociada a una simetría del lagrangiano, llamada en física cuántica invariancia gauge. Así por el teorema de Noether a cada simetría del lagrangiano asociada a un grupo uniparamétrico de transformaciones que dejan el lagrangiano invariante le corresponde una magnitud conservada.7 La conservación de la carga implica, al igual que la conservación de la masa, que en cada punto del espacio se satisface una ecuación de continuidad que relaciona la derivada de la densidad de carga eléctrica con la divergencia del vector densidad de corriente eléctrica, dicha ecuación expresa que el cambio neto en la densidad de cargaρ dentro de un volumen prefijado V es igual a la integral de la densidad de corriente eléctrica J sobre la superficie S que encierra el volumen, que a su vez es igual a la intensidad de corriente eléctrica I:

- \frac{\partial}{\partial t} \int_V \rho\, dV = \int_S \mathbf{J} \cdot \mathbf{dS} = I = - \frac{\partial Q}{\partial t}
Esta propiedad se conoce como cuantización de la carga y el valor fundamental corresponde al valor de carga eléctrica que posee el electrón y al cual se lo representa como e. Cualquier carga q que exista físicamente, puede escribirse como  \ N \times e siendo N un número entero, positivo o negativo.
Por convención se representa a la carga del electrón como -e, para el protón +e y para el neutrón, 0. La física de partículas postula que la carga de los quarks, partículas que componen a protones y neutrones toman valores fraccionarios de esta carga elemental. Sin embargo, nunca se han observado quarks libres y el valor de su carga en conjunto, en el caso del protón suma +e y en el neutrón suma 0.8
Aunque no tenemos una explicación suficientemente completa de porqué la carga es una magnitud cuantizada, que sólo puede aparecer en múltiplos de la carga elemental, se han propuestos diversas ideas:
  • Paul Dirac mostró que si existe un monopolo magnético la carga eléctrica debe estar cuantizada.
  • En el contexto de la teoría de Kaluza-KleinOskar Klein encontró que si se interpretaba el campo electromagnético como un efecto secundario de la curvatura de un espacio tiempo de topología \mathcal{M}\times S^1, entonces la compacidad de S^1\, comportaría que el momento lineal según la quinta dimensión estaría cuantizado y de ahí se seguía la cuantización de la carga.
La existencia de cargas fraccionarias en el modelo de quarks, complica el panorama, ya que el modelo estándar no aclara porqué las cargas fraccionarias no pueden ser libres. Y sólo pueden ser libres cargas que son múltiplos enteros de la carga elemental.



carca electria


En física, la carga eléctrica es una propiedad intrínseca de algunas partículas subatómicas (pérdida o ganancia de electrones) que se manifiesta mediante atracciones y repulsiones que determinan lasinteracciones electromagnéticas entre ellas. La materia cargada eléctricamente es influida por loscampos electromagnéticos siendo, a su vez, generadora de ellos. La interacción entre carga y campo eléctrico origina una de las cuatro interacciones fundamentales: la interacción electromagnética.
La carga eléctrica es de naturaleza discreta, fenómeno demostrado experimentalmente por Robert Millikan. Por razones históricas, a los electrones se les asignó carga negativa: –1, también expresada–e. Los protones tienen carga positiva: +1 o +e. A los quarks se les asigna carga fraccionaria: ±1/3 o ±2/3, aunque no se han podido observar libres en la naturaleza
.1

Carga eléctrica elemental

Las investigaciones actuales de la física apuntan a que la carga eléctrica es una propiedad cuantizada. La unidad más elemental de carga se encontró que es la carga que tiene el electrón, es decir alrededor de 1,602 176 487(40) × 10-19 culombios y es conocida como carga elemental.5El valor de la carga eléctrica de un cuerpo, representada como q o Q, se mide según el número de electrones que posea en exceso o en ausencia.6
En el Sistema Internacional de Unidades la unidad de carga eléctrica se denomina culombio (símbolo C) y se define como la cantidad de carga que a la distancia de 1 metro ejerce sobre otra cantidad de carga igual, la fuerza de 9×109 N.
Un culombio corresponde a 6,241 509 × 1018 electrones.2 El valor de la carga del electrón fue determinado entre 1910 y 1917 por Robert Andrews Millikan y en la actualidad su valor en el Sistema Internacional de acuerdo con la última lista de constantes del CODATA publicada es:5
 e = \frac{-1C}{6,241 509 \times 10^{18}} = -1,602 176 \times 10^{-19} C
Como el culombio puede no ser manejable en algunas aplicaciones, por ser demasiado grande, se utilizan también sus submúltiplos:
1 miliculombio =  \frac{1C}{1.000} = 1 mC
1 microculombio =  \frac{1C}{1.000.000} = 1 \mu C
Frecuentemente se usa también el sistema CGS cuya unidad de carga eléctrica es el Franklin (Fr). El valor de la carga elemental es entonces de aproximadamente 4,803×10–10 Fr.

CARGA ELECTRICA


Recapitulacion 3


EQUIPO
RECAPITULACION CARGAS ELECTrICAS.CONSULTAR EL SIMULADOR DE CARGAS
http://phet.colorado.edu/sims/charges-and-fields/charges-and-fields_es.html
1
UNA CARGA ELECTRICA  POSITIVA
2
UNA CARGA ELECTRICA NEGATIVA
3
DOS CARGAS ELECTRICAS NEGATIVAS
4
DOS CARGAS ELECTRICAS POSITIVAS
5
UNA CARGA ELECTRICA POSITIVA Y UNA CARGA ELECTRICA NEGATIVA
6
DOS CARGAS ELECTRICAS POSITIVAS Y DOS CARGAS ELECTRICAS NEGATIVAS.

Imágenes:
E1: Una carga eléctrica positiva

Equipo 2  Una carga eléctrica negativa




Equipo 3: DOS CARGAS ELECTRICAS NEGATIVAS

Equipo 4: DOS CARGAS ELECTRICAS POSITIVAS



Equipo 5: UNA CARGA ELECTRICA POSITIVA Y UNA CARGA ELECTRICA NEGATIVA


Equipo 6: DOS CARGAS ELECTRICAS POSITIVAS Y DOS CARGAS ELECTRICAS NEGATIVAS.



mapa

ONDAS Y PARTÍCULAS

  

En los apartados anteriores se han expuesto propiedades de las ondas mecánicas estudiadas en el marco de la física clásica.  En este paradigma el modelo corpuscular de propagación de la energía y el modelo ondulatorio son diferentes e incompatibles entre sí.
 
 
Las ondas tienen bastantes propiedades específicas (por ejemplo, difracción, interferencias, efecto Doppler,..) que, según el punto de vista de la física clásica, no pueden tener las partículas, y estas propiedades deberían servir para diferenciar los dos procesos. Así, por ejemplo, al atravesar una rendija:
Si lo hace un chorro de partículas (dibujos de arriba) no se producirá difracción. Casi todas seguirán en línea recta después de pasar por la rendija y al incidir en una pantalla deben producir un máximo de intensidad enfrente de la abertura y disminuir bruscamente dicha intensidad al alejarnos de esa zona.
En cambio, si lo hace una onda y el tamaño de la rendija es del orden de magnitud de la longitud de onda (dibujos de abajo), se producirá difracción y la intensidad recibida en una pantalla se debe distribuir por ella de una forma más homogénea.
 
En algunos casos es sencillo verificar que se cumplen éstas y otras predicciones experimentales que deberían permitir diferenciar las ondas de un chorro de partículas viajeras. Por ejemplo, no existe duda de que por la superficie del agua se transmiten ondas mecánicas transversales, de que el sonido se transmite por el aire y por otros medios materiales mediante ondas longitudinales o de que una escopeta de repetición puede actuar como foco de un chorro de perdigones.
 
Las cosas se complican cuando se somete a este tipo de pruebas a la luz y también a radiaciones formadas por partículas atómicas y/o subatómicas. En estos casos se observan comportamientos, que la física clásica no puede explicar.
La luz se comporta como una onda (no mecánica) que se refracta, se difracta, produce interferencias al atravesar una rendija doble o múltiple, etc. Pero, la propia luz también actúa como un chorro de corpúsculos en bastantes procesos en los que sus cuantos de energía (fotones) interaccionan con partículas subatómicas.
 
Difracción de un haz de electrones por un orificio
 Interpretación del efecto fotoeléctrico.
 
Lo mismo ocurre con las partículas como electrones, protones, etc. En el efecto fotoeléctrico, por ejemplo, la luz ilumina un metal y sus corpúsculos (fotones) empujan uno a uno a los electrones del metal, que en este proceso se comportan como partículas.
Sin embargo, un haz de estos mismos electrones experimenta difracción cuando pasa por un pequeño orificio circular de tamaño suficientemente pequeño (dibuja la figura típica de difracción en una pantalla situada detrás del orificio). También dos haces de electrones producen interferencias en un experimento consistente en hacerlos pasar a través de una rendija de tamaño adecuado doble o múltiple.
 
Ya hemos dicho que para la física clásica resulta totalmente contradictorio que una misma entidad física pueda manifestar un comportamiento corpuscular y también ondulatorio.  Con el desarrollo de la física cuántica, ambos comportamientos, que parecían contradictorios, se pudieron integrar en un modelo coherente.